Enhanced parallel cat swarm optimization based on the Taguchi method
نویسندگان
چکیده
In this paper, we present an enhanced parallel cat swarm optimization (EPCSO) method for solving numerical optimization problems. The parallel cat swarm optimization (PCSO) method is an optimization algorithm designed to solve numerical optimization problems under the conditions of a small population size and a few iteration numbers. The Taguchi method is widely used in the industry for optimizing the product and the process conditions. By adopting the Taguchi method into the tracing mode process of the PCSO method, we propose the EPCSO method with better accuracy and less computational time. In this paper, five test functions are used to evaluate the accuracy of the proposed EPCSO method. The experimental results show that the proposed EPCSO method gets higher accuracies than the existing PSO-based methods and requires less computational time than the PCSO method. We also apply the proposed method to solve the aircraft schedule recovery problem. The experimental results show that the proposed EPCSO method can provide the optimum recovered aircraft schedule in a very short time. The proposed EPCSO method gets the same recovery schedule having the same total delay time, the same delayed flight numbers and the same number of long delay flights as the Liu, Chen, and Chou method (2009). The optimal solutions can be found by the proposed EPCSO method in a very short time. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
EMCSO: An Elitist Multi-Objective Cat Swarm Optimization
This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...
متن کاملAN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION
This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...
متن کاملSolving Task Scheduling Problem in Cloud Computing Environment Using Orthogonal Taguchi-Cat Algorithm
Received Jan 9, 2017 Revised Mar 15, 2017 Accepted Apr 8, 2017 In cloud computing datacenter, task execution delay is no longer accidental. In recent times, a number of artificial intelligence scheduling techniques are proposed and applied to reduce task execution delay. In this study, we proposed an algorithm called Orthogonal Taguchi Based-Cat Swarm Optimization (OTB-CSO) to minimize total ta...
متن کاملSolving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization
In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...
متن کاملSolving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization
In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 39 شماره
صفحات -
تاریخ انتشار 2012